Pmargin.java
/*
* $Id: Pmargin.java,v 1.38 2008/07/17 07:30:03 koga Exp $
*
* Copyright (C) 2004 Koga Laboratory. All rights reserved.
*/
package org.mklab.tool.control;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.mklab.nfc.matrix.DoubleComplexMatrix;
import org.mklab.nfc.matrix.DoubleMatrix;
import org.mklab.nfc.matrix.IntMatrix;
import org.mklab.nfc.matrix.misc.LogarithmicallySpacedVector;
import org.mklab.nfc.scalar.DoubleComplexNumber;
import org.mklab.nfc.scalar.DoubleComplexPolynomial;
import org.mklab.nfc.scalar.DoubleComplexRationalPolynomial;
import org.mklab.nfc.scalar.DoubleNumber;
import org.mklab.nfc.scalar.DoublePolynomial;
import org.mklab.nfc.scalar.DoubleRationalPolynomial;
import org.mklab.tool.matrix.Unwrap;
/**
* 位相余裕とゲイン交差周波数を求めるクラスです。
*
* <p>Phase margin and crossover frequency
*
* @author koga
* @version $Revision: 1.38 $
* @see org.mklab.tool.control.Gmargin
* @see org.mklab.tool.control.Margin
*/
public class Pmargin {
/**
* @param G 伝達関数
* @return {pm, wcg} (位相余裕, ゲイン交差周波数)
*/
public static List<DoubleNumber> pmargin(DoubleRationalPolynomial G) {
double wmin = 0.001;
double wmax = 1000.0;
double tolerance = 1.0E-3;
return pmargin(G, wmin, wmax, tolerance);
}
/**
* @param G 伝達関数
* @param wmin 最小周波数
* @return {pm, wcg} (位相余裕, ゲイン交差周波数)
*/
public static List<DoubleNumber> pmargin(DoubleRationalPolynomial G, double wmin) {
double wmax = 1000.0;
double tolerance = 1.0E-3;
return pmargin(G, wmin, wmax, tolerance);
}
/**
* @param G 伝達関数
* @param wmin 最小周波数
* @param wmax 最大周波数
* @return {pm, wcg} (位相余裕, ゲイン交差周波数)
*/
public static List<DoubleNumber> pmargin(DoubleRationalPolynomial G, double wmin, double wmax) {
double tolerance = 1.0E-3;
return pmargin(G, wmin, wmax, tolerance);
}
/**
* 位相余裕 <code>pm</code> とゲイン交差周波数 <code>wcg</code> を返します。
*
* @param g 伝達関数
* @param wmin 最小周波数
* @param wmax 最大周波数
* @param tolerance ゲイン交差周波数の許容誤差
* @return {pm, wcg} (位相余裕, ゲイン交差周波数) margin
*/
public static List<DoubleNumber> pmargin(DoubleRationalPolynomial g, double wmin, double wmax, double tolerance) {
double wmin2 = wmin;
double wmax2 = wmax;
double gainCrossFrequency, phaseMargin;
for (;;) {
final DoubleMatrix w = LogarithmicallySpacedVector.create(Math.log(wmin2) / Math.log(10), Math.log(wmax2) / Math.log(10), 100);
final List<DoubleMatrix> gainPhase = new DoubleBode(DoubleLinearSystemFactory.createLinearSystem(g)).getGainAndPhase(w).get(0);
DoubleMatrix gain = gainPhase.get(0);
DoubleMatrix phase = gainPhase.get(1);
gain = gain.log10ElementWise().multiply(20);
phase = Unwrap.unwrapRowWise(phase);
IntMatrix idx = gain.compareElementWise(".<", 0.0).find(); //$NON-NLS-1$
if (idx.length() == 0) {
System.err.println("Pmargin: " + Messages.getString("Pmargin.0")); //$NON-NLS-1$ //$NON-NLS-2$
return new ArrayList<>(Arrays.asList(new DoubleNumber[] {new DoubleNumber(Double.POSITIVE_INFINITY), new DoubleNumber(Double.NaN)}));
} else if (idx.length() == w.getColumnSize()) {
System.err.println("Pmargin: " + Messages.getString("Pmargin.1")); //$NON-NLS-1$ //$NON-NLS-2$
return new ArrayList<>(Arrays.asList(new DoubleNumber[] {new DoubleNumber(Double.POSITIVE_INFINITY), new DoubleNumber(Double.NaN)}));
}
wmin2 = w.getDoubleElement(idx.getIntElement(1) - 1);
wmax2 = w.getDoubleElement(idx.getIntElement(1));
if (wmax2 - wmin2 < tolerance) {
gainCrossFrequency = wmax2;
phaseMargin = 180 + phase.getDoubleElement(idx.getIntElement(1));
break;
}
}
return new ArrayList<>(Arrays.asList(new DoubleNumber[] {new DoubleNumber(phaseMargin), new DoubleNumber(gainCrossFrequency)}));
}
/**
* @param g 伝達関数
* @return {pm, wcg} (位相余裕, ゲイン交差周波数) margin
*/
public static List<DoubleNumber> pmargin_roots(DoubleRationalPolynomial g) {
double tolerance = 1.0E-12;
return pmargin_roots(g, tolerance);
}
/**
* @param g 伝達関数
* @param tolerance ゲイン交差周波数の許容誤差
* @return {pm, wcg} (位相余裕, ゲイン交差周波数) margin
*/
public static List<DoubleNumber> pmargin_roots(DoubleRationalPolynomial g, double tolerance) {
DoubleComplexNumber j = new DoubleComplexNumber(0, 1);
DoublePolynomial w = new DoublePolynomial("s"); //$NON-NLS-1$
DoubleComplexPolynomial nc = new DoubleComplexPolynomial(g.getNumerator()).evaluate(w.multiply(j));
DoubleComplexPolynomial dc = new DoubleComplexPolynomial(g.getDenominator()).evaluate(w.multiply(j));
DoublePolynomial eq = nc.getRealPart().power(2).add(nc.getImaginaryPart().power(2)).subtract(dc.getRealPart().power(2).add(dc.getImaginaryPart().power(2)));
DoubleComplexMatrix rt = eq.getRoots();
DoubleMatrix wcgs = (rt
.getSubVector((rt.getSubVector(rt.getImaginaryPart().absElementWise().compareElementWise(".<", tolerance).find())).getRealPart().compareElementWise(".>", //$NON-NLS-1$ //$NON-NLS-2$
0.0).find())).getRealPart();
DoubleNumber wcg;
if (wcgs.length() == 0) { // no crossover frequency
System.err.println("Pmargin: " + Messages.getString("Pmargin.5")); //$NON-NLS-1$ //$NON-NLS-2$
wcg = new DoubleNumber(-1);
} else {
wcg = wcgs.getElement(1);
}
if (wcg.isLessThan(0)) {
return Arrays.<DoubleNumber> asList(new DoubleNumber[]{new DoubleNumber(0), new DoubleNumber(0)});
}
return Arrays.<DoubleNumber> asList(new DoubleNumber[] {(new DoubleComplexRationalPolynomial(g).evaluate(j.multiply(new DoubleComplexNumber(wcg)))).arg().multiply(180).divide(Math.PI), wcg});
}
}